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Non-uniformity of helicopter blades results in vibrations at low frequencies. These
vibrations result in increased fatigue of the crew, discomfort to passengers and maintenance
and reliability problems. Non-uniformities include geometric, mass, structural and
aerodynamic aspects. Typical blades have special devices by which intentional
non-uniformities can be introduced, in order to cancel the influence of ‘‘natural’’
non-uniformities of the blades. Non-uniformities also result in out-of-track behavior of the
blades. In many cases the corrections are aimed at decreasing the out-of-track behavior of
the blades, based on the assumption that this effort will also decrease the vibrations that
are transferred from the rotor to the hub. Unfortunately, tracking does not necessarily
result in optimal reduction of the vibrations. The present paper presents a general
mathematical definition of track and balance, and the relation between them. This
mathematical model opens the way for a thorough investigation on optimal rotor tuning.
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1. INTRODUCTION

One of the most significant problems of helicopters today is their vibrations. Vibrations
result in the following: (a) increased fatigue of the crew; (b) increased fatigue of mechanical
parts that leads to maintenance problems that affect the vehicle’s availability; (c) higher
probability of malfunctions in the avionics or other ‘‘delicate’’ systems; (d) in many cases,
a high level of vibrations that limits the operational envelope; (e) increased discomfort for
passengers in civil applications.

It is common to divide the helicopter vibrations into three categories: (a) high frequency
vibrations, where the frequency of vibration (f ) is very high compared to the rotor
rotational frequency (fR), (fe 20 fR)—these vibrations are mainly caused by the engine
or gear-box; (b) moderate frequency vibrations (20 fR q fe 5 fR)—the tail rotor, and to
a lesser extent the (main) rotor, are the main sources of these vibrations; (c) low frequency
vibrations (5 fR q f ) that are caused mainly by the rotor—these vibrations have the most
severe effect on human tolerance and fatigue of mechanical parts.

The present research is concerned mainly with vibrations that belong to the last category.
When the low frequency vibrations that are caused by the rotor are considered, they may
be divided into two different kinds: (a) vibration that is inherent to the asymmetric nature
of a rotor in forward flight, and is present even in cases where all the blades are identical;
(b) vibration due to non-uniformity of the blades—this non-uniformity may be the result
of inaccuracies in the production procedure, or appear and grow during the operation of
the helicopter (thus requiring continuous maintenance and inspection).
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In the case of the first kind of vibration, the rotor acts as a mechanical filter and applies
on the fuselage only vibrations having specific discrete frequencies. These frequencies
equal (mbfR), where b is the number of blades, and m is a positive integer (1, 2, . . . ). As
indicated above, the first kind of vibration is inherent to a rotor in forward flight and
thus always exists. Nevertheless, vibration amplitudes can be reduced by using various
techniques [1].

The second kind of vibration, due to non-uniformity of the blades, has attracted only
a limited amount of scientific interest, although ground crews are occupied with it on
a continuous basis [2]. These vibrations, unlike the first kind, include all the rotor
harmonics (mfR). As can be seen in references [3, 4], for most practical cases, a
vibration having a frequency of fR has the most severe effect on the human body
tolerance.

The non-uniformities of the blades may be the result of aerodynamic, mass or structural
non-uniformities along the blades. Moreover, they also may include non-uniformity in the
characteristics of the connection between the roots of the blades and the hub. In order
to cope with these non-uniformities, rotor blades have various devices to introduce
intentional non-uniformity among them, in order to cancel the results of the unintentional
non-uniformity (denoted ‘‘natural’’ in what follows). These devices are shown
schematically in Figure 1, and they include aerodynamic and mass devices: (a) pitch rod
setting—by changing the length of a certain pitch rod, the pitch angle of the blade is varied,
thus resulting in variations in the aerodynamic loads that act along the blade; (b) trailing
edge tabs—by bending these tabs the cross-sectional camber is changed, and thus the
aerodynamic loads are varied; (c) balance weights—these weights can be attached at
specific predetermined locations along the blade, changing the blade mass distribution.

Non-uniformity of the blades also leads to differences between the motions of the
various blades. Of special interest, in this case, is the flapping motion, since it is relatively
easy to measure the flapping amplitude of each blade. In fact, instead of measuring the
flapping, usually the blade tip path is measured.

Thus, all efforts to decrease non-uniformity of the blades started as efforts to ‘‘track’’

Figure 1. The track and balance elements of a typical blade.
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the blades: namely, trying to reach a state where the tip paths of all the blades coincide.
Various methods were developed in order to measure the ‘‘out-of-track’’ magnitude of the
various blades. Nagy and Greguss [5] mentioned two simple mechanical methods that were
used for many years: the brush and flag methods. These authors then described an
advanced optical method based on the diffuse reflection of laser light by the running
blades. Nowadays, various advanced optical methods are used to measure blade
out-of-track.

Nevertheless, it should be recalled that rotor tuning is carried out in order to reduce
the low frequency vibrations that are transmitted from the rotor to the helicopter
fuselage. It turns out, and is well known to ground crews and helicopter maintenance
experts, that tracking does not always result in an optimal reduction of the vibrations.
Moreover, ground crews can always recall cases of rotors in-track that resulted in high
levels of vibrations. This fact was the motivation behind the development of advanced
tuning systems, that also include (besides measuring the out-of-tracking) various
accelerometers that are distributed over the fuselage and measure the fuselage vibrations.
The rotor tuning in this case includes track and balance, namely reduction of the rotor
out-of-track, as well as the fuselage vibrations. The tuning procedure is guided by a
computer code that uses the measurements of all the sensors, at various air speeds, as
input data.

While various manufacturers offer advanced, fairly complicated, systems for rotor
tuning, the authors are not aware of any detailed analytical study on the optimal
balancing of helicopter rotors, and its relation to rotor tracking. The purpose of this
paper is to present such a study. The paper is divided into two parts. In the first part,
the derivation of the analytical model will be presented. Tracking and balancing will
be defined mathematically. In the second part [6] the mathematical model will be
validated and then used in order to study the optimal tuning of a rotor, and its relation
to tracking.

2. THE SYSTEMS GEOMETRY

Three different co-ordinate systems are defined: all are right-hand Cartesian systems.
(a) The hub system of co-ordinates (xH , yH , zH): this is a system that is attached to the

helicopter fuselage and does not rotate with the rotor; The origin of this system, point OH ,
is located at the hub center, as shown in Figure 2; the axis zH coincides with the axis of
the rotor shaft, while the xH-axis points forward and yH points to the left (when looking
from above).

(b) The rotating system of the kth blade (xRk , yRk , zRk): this system is attached to the
rotor and rotates with it, at a constant angular speed V. The origin of this system coincides
with the origin of the hub system. The axis zRk coincides with the axis zH . The axis xRk lies
along a line that connects the hub center with the point of attachment of the kth blade
(see Figure 2).

(c) The system of co-ordinates of the kth blade (xBk , yBk , zBk): this system is attached to
the blade root and moves with it, relative to the rotor system. In Figure 3 this motion
includes a flapping angle bk , a lead–lag angle zk and a pitch angle uDk . In the case in which
bk = zk = uDk =0, the co-ordinate directions of the rotating and blade systems coincide.
The flapping angle bk is of special interest. If elastic deformations are neglected, then this
angle practically determines the blade tip path. Elastic deformations may affect the tip path
if they are not negligible.

It is assumed that the helicopter is in a straight flight, at a constant speed (namely, that
any angular rates or linear accelerations are negligibly small). In this case all the variables
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Figure 2. The hub and rotating systems of co-ordinates.

are periodic, where the basic frequency is the rotor frequency. Thus, if one considers the
flapping angle of the kth blade, bk , it can be described as an infinite Fourier series:

bk = b0
k + s

a

i=1

bis
k sin (ick)+ s

a

i=1

bic
k cos (ick). (2.1)

ck is the azimuth angle of the kth blade (see Figure 2). The blade numbers range between
0 and (b−1), and increase in the counter-clockwise direction, when looking from above.
For convenience, and without losing any generality, blade number zero is chosen as the
representative blade. Thus, since the blades are uniformly distributed over the disk,

ck =c+2pk/b, (2.2)

where c is the azimuth angle of the representative blade.
The coefficients b0

k , bis
k and bic

k are functions of the blade properties, rotor angular speed,
speed of flight, shaft angles and air density. In practical cases, the coefficients decrease as
i is increased. Since interest here is in low frequency vibrations, the present derivation will
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Figure 3. The kth blade motion and system of co-ordinates.

be confined to five harmonics, higher ones being neglected. If necessary, a similar
derivation can be carried out for higher numbers of harmonics (iq 5). Thus

bk = b0
k + s

5

i=1

bis
k sin (ick)+ s

5

i=1

bic
k cos (ick) (2.3)

Equation (2.3) indicates that the blade flapping is defined by a column vector of order 11,
bC

k (the upper index C indicates that this is a vector of coefficients), defined as

bC
k = {b0

k , b1s
k , b2s

k , . . . , b5s
k , b1c

k , b2c
k , . . . , b5c

k }, 0E kE b−1. (2.4)

In the present case, in which non-uniformity of the blades is considered, it is convenient
to describe bC

k as the sum of two vectors of order 11,

bC
k = bC

N +DbC
k (2.5)

where bC
N is the flapping of a certain nominal (master) blade (this vector is not a function

of k), while DbC
k represents the deviation of the flapping of the kth blade, relative to the

nominal one.

3. LOADS TRANSFERRED FROM THE ROTOR TO THE FUSELAGE

Each blade transfers a load to the hub, which can be described by a force vector and
a moment vector, at the hub center. If all these loads are added properly, the resultant
load that is transferred from the rotor to the hub is obtained. While it is convenient to
describe the loads that act on a certain blade by their components in the rotating system
of co-ordinates of that blade, the loads that are transmitted to the fuselage by the entire
rotor are calculated in the hub non-rotating system. Thus, the procedure of the loads
calculations also includes co-ordinate transformation.
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3.1.          

The force that is transferred from the kth blade to the hub is described by its components
along the axes (xRk , yRk , zRk), (FR

xk , FR
yk , FR

zk). These components can be described by using
a Fourier series (recall that five terms are retained in the present derivation):

FR
ak =FR0

ak + s
5

i=1

[FRis
ak sin (ick)+FRic

ak cos (ick)], a0 x, y, z. (3.1)

The coefficients in equation (3.1) have two lower indices: the first one indicates the
direction of the component (xRk , yRk or zRk), while the second one indicates the blade
number (0E kE b−1). There are also three upper indices: the first one (R) indicates that
the components along the rotating system of co-ordinates are concerned and second one
(i) is the harmonic number, while the third index indicates if a cosine (c) or a sine (s)
component is considered. Thus, similar to the flapping angles, each of the force
components can be described by a vector of order 11 that includes all the coefficients of
equation (3.1).

fCR
ak = {FR0

ak , FR1s
ak , FR2s

ak , . . . , FR5s
ak , FR1c

ak , FR2c
ak , . . . , FR5c

ak },

a0 x, y, z, k=0, . . . , b−1. (3.2)

The upper index CR indicates that this is the vector of coefficients (C) in the blade rotating
system (R). The lower indices indicate that the a component of the force, of the kth blade,
is dealt with.

In the case of perfectly uniform (identical) blades, all the vectors fCR
ak , of all the blades,

are identical. Since in the present investigation the case of non-uniform blades is
considered, it is convenient, similar to flapping, to describe the force vector as the sum
of two other vectors of order 11:

fCR
ak = fCR

aN +DfCR
ak , a0 x, y, z. (3.3)

The vector fCR
aN is the coefficients’ vector of a ‘‘nominal’’ blade and is identical for all the

blades. DfCR
ak represents the deviations of each blade from the nominal one. This vector may

differ from one blade to another (function of k).

3.2.          

The resultant force that is transferred from the rotor to the hub is obtained by a vector
summation of all the forces that are transferred to the hub by the individual blades. It is
convenient to describe this force by its components in the hub system of co-ordinates,
(FH

x , FH
y , FH

z ), thus presenting the vibrations as they are ‘‘felt’’ by the fuselage. From Figure
2 it is easy to see that

FH
x = s

b−1

k=0

(−FR
xk cos ck +FR

yk sin ck), (3.4a)

FH
y = s

b−1

k=0

(−FR
xk sin ck −FR

yk cos ck), FH
z = s

b−1

k=0

FR
zk . (3.4b, c)
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As was done in equation (3.3) it is very convenient to express the components FH
x , FH

y and
FH

z , as follows:

FH
a =FH

aN +DFH
a , a0 x, y, z. (3.5)

FH
aN is the force component that would have been transmitted to the hub if all the blades

were identical to the nominal one. DFH
a comprises the contributions due to deviations of

the various blades, from the nominal one. Since the present investigation deals with
vibrations due to non-uniformity of the blades, the derivations will concentrate on DFH

a .
Now equation (3.3) is substituted into equation (3.1), and the result is substituted into

equations (3.4a–c). In addition, use is made of equation (2.2), while products of sines and
cosines are replaced by sums of sines and cosines, so that the final result is

DFH
a =DFH0

a + s
5

i=1

[DFHis
a sin (ic)+DFHic

a cos (ic)], a0 x, y, z. (3.6)

Examples of detailed expressions for some of the coefficients in equation (3.6) are presented
in the Appendix. It should be emphasized that harmonics higher than a fifth, which are
obtained during the derivations, are neglected.

As in the case of the vector of coefficients in the rotating system, fCR
ak , it is also convenient

to define a vector of order 11, of coefficients (C) in the hub system (H), DfCH
a :

DfCH
a = {DFH0

a , DFH1s
a , DFH2s

a , . . . , DFH5s
a , DFH1c

a , . . . , DFH5c
a }, a0 x, y, z. (3.7)

3.3.           

    

Each blade also transfers to the hub a moment, about the hub center. This moment
presents in general the contribution of two effects, as follows.

(a) The blade is attached to the hub at a certain offset, denoted eR in Figure 3 (e itself
is the ‘‘non-dimensional offset’’). Thus, the forces that are transferred from the blade to
the hub, at the attachment point, are exerting a moment about the hub center.

(b) While articulated blades transfer (to the hub) only negligible moments at the point
of attachment, hingeless blades are capable of transferring significant moments.

As in the derivations in section 3.2, the resultant moment about the hub center, which
is transferred from the rotor to the hub, is obtained by a vector summation of all the
contributions of the individual blades. The resultant moment is described by its
components in the hub system of co-ordinates: MH

x , MH
y and MH

z . As in the case of the
components of the resultant force (see equation (3.5)), the moment components are also
described as the sum of nominal values, together with perturbations:

MH
a =MH

aN +DMH
a , a0 x, y, z. (3.8)

The perturbations are described by Fourier series (see also equation (3.6)):

DMH
a =DMH0

a + s
5

i=1

[DMHis
a sin (ic)+DMHic

a cos (ic)], a0 x, y, z. (3.9)

Examples of detailed expressions for some of the coefficients in equation (3.9), under
certain assumptions, are presented in the Appendix.



.   . -596

As for the vector DfCH
a , defined in equation (3.7), it is also convenient to define vectors,

of order 11, of the moment coefficients in the hub system:

DmCH
a = {DMH0, DMH1s

a , DMH2s
a , . . . , DMH5s

a , DMH1c
a , . . . , DMH5c

a }, a0 x, y, z. (3.10)

4. THE INFLUENCE OF NON-UNIFORMITY ON THE LOADS TRANSFERRED FROM
THE ROTOR TO THE HUB AND ON THE BLADES’ FLAPPING

4.1.   -

As indicated above, it is convenient to define a nominal blade (which actually may not
exist). It is easy to look upon the nominal blade as the blade that was defined by the rotor
designer: therefore the parameters that define this blade are called the design parameters.
In general, each blade differs from the nominal one. The differences appear in the
parameters that define the blade (geometric, inertia, structural and aerodynamic
parameters). The differences between the parameters of a certain blade, and the nominal
ones, are called the perturbation parameters, abbreviated to perturbations. The
perturbation sources are as follows: (a) inaccuracies in the production procedure; (b) the
evolution of defects during the helicopter operation; (c) intentional perturbations that are
introduced by the ground crew.

The first two sources are unintentional, and result in what is denoted here the ‘‘natural’’
perturbations. The third source represents corrections that are introduced in order to
reduce the effect of the natural perturbations. These are known as correction perturbations.
The correction perturbations may include the angles of the trailing-edge tabs, pitch rod
settings, and changes of the balance weights.

It is assumed that there are Nd parameters that define the natural perturbations of
each blade. The natural perturbations of the kth blade are described by a vector of
order Nd , dk :

dk = {d1k , d2k , . . . , dNdk}, 0E kE (b−1). (4.1)

There are Ne correction parameters that define the correction perturbations, associated
with each blade. The correction parameters of the kth blade are described by a vector of
order Ne , ek :

ek = {e1k , e2k , . . . , eNek}, 0E kE (b−1). (4.2)

4.2.    -      

    

According to the assumptions of the present derivation, the force that is transferred from
the kth blade to the hub, at any moment, is defined by a vector of coefficients of order
33, fCR

k (see also equation (3.3)):

fCR
k = {fCR

xk , fCR
yk , fCR

zk }. (4.3a)

In a similar manner, a vector of perturbations (relative to the nominal blade), DfCR
k , is also

defined:

DfCR
k = {DfCR

xk , DfCR
yk , DfCR

zk }. (4.3b)

Again, the upper indices CR indicate that coefficients (C) in the rotating (R) system are
considered. It is convenient to describe DfCR

k as comprised of the sum of two other vectors
of order 33:

DfCR
k =DfCR,D

k +DfCR,E
k . (4.4)
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The additional upper index D indicates that the natural (unintentional) force perturbations
are considered, which are defined by the vector dk . The upper index E indicates that the
correction (intentional) perturbations are considered, which are defined by the vector ek .

It is now assumed that, as in almost all practical cases, the vectors dk and ek represent
small perturbations. Thus, if the perturbations in the forces are expressed as Taylor series
in the elements of dk and ek , then it is possible to consider only the linear terms in the
perturbations: therefore

DfCR
k =SFCR,Ddk +SFCR,Eek , (4.5)

where SFCR,D and SFCR,E are matrices of order 33× Nd and 33×Ne , respectively,
defined as

SFCR,D = fCR
k {1/1d1k , 1/1d2k , . . . , 1/1dNdk}, (4.6)

SFCR,E = fCR
k {1/1e1k , 1/1e2k , . . . , 1/1eNek}, (4.7)

where

fCR (1/1q)0 (1/1q)fCR. (4.8)

The matrices SFCR,D and SFCR,E are identical for all the blades and the index k in equation
(4.6) can be chosen arbitrarily. All the derivatives are taken at the nominal state.

It should be noted that equation (4.5) is based on the assumption that the perturbations
in the loads that are transferred from the kth blade to the hub are functions only of the
perturbations associated with that specific blade; namely, the vectors dk and ek . In other
words, it is assumed that inter-blade influences on the vibrations are very small and thus
can be neglected. Yet, it is well known that inter-blade mechanical [7, 8] or aerodynamic
[9–12] couplings do exist and may have non-negligible influences. The addition of these
influences to the present analysis is straightforward and does not present any difficulties,
as will be indicated in what follows.

4.3.    -     

     

In section 3.2, a summation of all the forces transferred from the individual blades to
the hub was presented. This summation is accompanied by co-ordinate transformation,
from the rotating system (R) to the hub system (H). The same procedure can be carried
out for the perturbations in the forces, which were described in section 4.2.

A similar derivation can be carried out for the moments that are transferred from the
rotor to the hub.

It is convenient to define a vector of order 55, DlCH, that includes the coefficients (C)
of the perturbations in the loads that are transferred from the rotor to the hub, described
by their components in the hub (H) system (see equations (3.7) and (3.10)):

DlCH = {DfCH
x , DfCH

y , DfCH
z , DmCH

x , DmCH
y }. (4.9)

DlCH expresses, in fact, the vibrational loads that are exerted on the fuselage, due to
non-uniformities of the blades. The vector of components DmCH

z is not included in equation
(4.9), since it mainly affects the drive train dynamics and its contribution to the vibrations
is less important.
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After carrying out the summation and transformation from the rotating system of
co-ordinates to the hub system, one obtains that

DlCH =SLCH,Dd+SLCH,Ee. (4.10)

SLCH,D and SLCH,E are matrices of orders 55× bNd and 55× bNe , respectively. d is a vector
of order bNd that describes the natural perturbations of all the blades:

d= {d0, d1, . . . , db−1}. (4.11)

e is a vector of order bNe , that describes the correction perturbations of all the blades:

e= {e0, e1, . . . , eb−1}. (4.12)

The matrices SLCH,D and SLCH,E are called the sensitivity matrices of the perturbations in the
resultant loads that are transferred from the rotor to the hub, with respect to the natural
perturbations and the correction perturbations, respectively. The matrices can be
calculated by using detailed models of the rotor. Such models can differ in their complexity,
concerning the dynamic, structural and aerodynamic aspects. On the other hand, these
matrices can be determined on the basis of flight tests. Although flight tests may be much
more complicated and expensive, their results are expected to be more accurate.

4.4.    -      

As defined by equation (2.5), the vector DbC
k describes the deviation in the flapping of

the kth blade, relative to the nominal one. As was done for equation (4.5), it is possible
to obtain the following expression:

DbC
k =DbCD

k +DbCE
k =SbC,Ddk +SbC,Eek . (4.13)

DbCD
k and DbCE

k are vectors of coefficients or order 11 that define the coefficients of the
natural flapping perturbations and correction flapping perturbations of the kth blade.

Again, as in equation (4.5), equation (4.13) is also based on the assumption that
inter-blade coupling effects are small and can be neglected.

The matrices SbC,D
k and SbC,E

k are of order 11× Nd and 11×Ne , respectively. These
matrices include partial derivatives as follows:

SbC,D
k = bC

k {1/1d1k , 1/1d2k , . . . , 1/1dNdk}, (4.14)

SbC,E
k = bC

k {1/1e1k , 1/1e2k , . . . , 1/1eNek}. (4.15)

Since the matrices are identical for all the blades, there is not any influence of the choice
of k. All of the derivations are calculated in the nominal state.

When tracking is considered, it is convenient to define the vector DbC as follows:

DbC = {DbC
0 , DbC

1 , . . . , DbC
b−1}. (4.16)

According to equation (4.13),

DbC =Sb,Dd+Sb,Ee. (4.17)
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Vectors d and e were defined by equations (4.11) and (4.12), respectively. Sb,D and Sb,E are
matries of order 11b×Ndb and 11b×Neb, respectively, where

SbC,D SbC,E

.
.

.
.

SbC,D 0 SbC,E 0
G
G

G

G

G

K

k

G
G

G

G

G

L

l

G
G

G

G

G

K

k

G
G

G

G

G

L

l

.
.
.

.
.
.

Sb,D =
.
.
.

, Sb,E =
.
.
.

. (4.18, 4.19)

0 SbC,D 0 SbC,E

If inter-blade coupling effects are included, then the off-diagonal matrices in equations
(4.18) and (4.19) become non-zero matrices.

5. MATHEMATICAL DEFINITIONS OF ROTOR TRACK AND BALANCE

5.1.  

When elastic deformations are negligible, the tip path of each blade is determined by
the blade flapping angle, bk . If elastic effects become important, then one can refer to all
of the bk as parameters that define the blade tip path itself (taking into account rigid
flapping and elastic effects). Similar to the derivations in the previous sections, it is
convenient to express bk as the sum

bk = bN +Dbk , (5.1)

where bN is the flapping of the nominal blade and Dbk is the perturbation. Dbk itself can
be described as the sum of a natural perturbation DbD

k , and a correction perturbation DbE
k :

Dbk =DbD
k +DbE

k . (5.2)

Tracking means reducing the differences between the various Dbk to a minimum. In the
present investigation it is assumed that tracking is aimed at bringing all the blades to a
tip track that is as close as possible to the average of the natural perturbations of all the
individual blades, Dbb

M , where

Dbb
M =

1
b

s
b−1

k=0

DbD
k . (5.3)

As indicated by equation (4.13), DbD
k is defined by a vector of coefficients of order 11, DbCD

k :

DbCD
k = {DbD0

k , DbD1s
k , . . . , DbD5s

k , DbD1c
k , . . . , DbD5c

k }, 0E kE b−1. (5.4)

Dbb
M will also be defined by a vector of order 11, Dbbc

M :

Dbbc
M =

1
b 6 s

b−1

k=0

DbD0
k , s

b−1

k=0

DbD1s
k , . . . , s

b−1

k=0

DbD5s
k , s

b−1

k=0

DbD1c
k , . . . , s

b−1

k=0

DbD5c
k 7. (5.5)

The out-of-track vector of the rotor, DbCT, is a vector of order 11b that is defined (see
equation 4.17) as

DbCT =DbC −DbC
M =Sb,Dd+Sb,Ee−DbC

M . (5.6)

Here DbC
M is a vector of order 11b, defined as

DbC
M = {Dbbc

M , Dbbc
M , . . . , Dbbc

M}. (5.7)
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In the case of an ideally in-track rotor, the vector DbCT is the zero vector (all of its elements
are equal to zero).

During rotor tracking the vector d is an input to the problem, while the vector of
correction parameters e represents the vector of free variables. Usually, the order of the
vector e is smaller than 11b; therefore, in general, there does not exist a vector e that will
make DbCT equal to zero. Instead, the quality of tracking is defined as the absolute value
of the vector DbCT. The smaller this value becomes, the closer the blades are to ideal
tracking. It is conveninet to write equation (5.6) as

DbCT =Sb,Ee+ g, (5.8)

where

g=Sb,D d−DbC
M . (5.9)

Equation (5.8) is a typical least squares problem [13]: find a vector of correction
perturbations e, that will result in a minimum of the absolute value (Euclidean length) of
the vector DbCT.

5.2.   

Balancing the rotor is defined as the procedure of reducing the loads that are transferred
from the rotor to the hub, due to the non-uniformity of the blades. Equation (4.10) defines
this procedure mathematically, and is written here again in a slightly different manner,

DlCH =SLCH,Ee+ h, (5.10)

where h is a vector of order 55, defined as

h=SLCH,Dd. (5.11)

Thus, rotor balancing is the procedure of finding the vector e that will result in a minimum
of the absolute value of the vector DlCH.

6.3.  

As indicated above, in most of the practical cases the number of correction parameters
is smaller than the number of equations. Thus, an overdetermined system of linear
equations is obtained, that is solved by using a least squares method. As will be shown
in reference [6], usually one would like to balance or track the rotor at various air speeds,
a procedure that leads to a significant increase in the number of equations.

In the present investigation, the numerical method of Hanson [14] will be used in order
to solve equations (5.8) or (5.10). Moreover, the method also allows a solution under
certain constraints. Such constraints may include certain mathematical relations between
the free variables, or certain inequalities that limit the range of variation of the free
parameters. Constraints of the second kind will be applied in reference [6].

It should be pointed out that the relative importance of certain harmonics can be
increased by multiplying the specific equations, representing these harmonics, by weighting
coefficients that are larger than unity. The multiplication leads to smaller residual values
in the case of these harmonics. An opposite trend is obtained as a result of using weighting
coefficients smaller than unity.

6. CONCLUSIONS

Non-uniformity of helicopter blades results in vibrations at low frequencies. These
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vibrations result in increased fatigue of the crew, discomfort to passengers and
maintenance and reliability problems for many helicopter parts and equipment.
Non-uniformity of the blades appears as a result of manufacturing inaccuracies, but it is
mainly caused by imperfections that grow during the operation of the helicopter.

Rotors have various devices that offer ways of reducing the blades non-uniformity. This
is done by introducing intentional non-uniformities that are supposed to cancel the effects
of the natural non-uniformities.

Since non-uniformity among blades also leads to out-of-track blades, it is common
to use this fact as a means of reducing the rotor non-uniformity. Thus, instead of
directly reducing the vibrations, in many cases the ground crew determines the
correction parameters in such a way that the blades’ out-of-track will decrease to a
minimum. Unfortunately, it turns out that this may not be the optimal way of reducing
vibrations.

In the present paper, a mathematical approach to track and balance was presented. Both
operations have been defined mathematically in a general manner. The definitions are
based on a least squares formulation, which allows any combination of equations and
correction parameters. This mathematical model offers the means of a thorough
investigation of tracking or balancing, and their relationship. Such an investigation is
presented in the second part of this paper [6].
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In the following expressions, harmonics higher than the fifth have been neglected. In
the case of the xH and yH components of the force or the moment, only the constant term
and sine harmonics are presented. In the case of the force component in the zH direction,
all the terms are presented:

DFH0
x = 1

2(−DFR1c
x0 +DFR1s

y0 −DFR1c
x1 +DFR1s

y1 −DFR1c
x2 +DFR1s

y2 −DFR1c
x3 +DFR1s

y3 ), (A1a)

DFH1s
x = 1

2(−DFR2s
x0 +2DFR0

y0 −DFR2c
y0 +2DFR0

x1 +DFR2c
x1 −DFR2s

y1 +DFR2s
x2

−2DFR0
y2 +DFR2c

y2 −2DFR0
x3 −DFR2c

x3 +DFR2s
y1 ), (A1b)

DFH2s
x = 1

2(−DFR1s
x0 −DFR3s

x0 +DFR1c
y0 −DFR3c

y0 +DFR1s
x1 +DFR3s

x1 −DFR1c
y1 +DFR3c

y1

−DFR1s
x2 −DFR3s

x2 +DFR1c
y2 −DFR3c

y2 +DFR1s
x3 +DFR3s

x3 −DFR1c
y3 +DFR3c

y3 ), (A1c)

DFH3s
x =−1

2(DFR2s
x0 +DFR4s

x0 −DFR2c
y0 +DFR4c

y0 +DFR2c
x1 +DFR4c

x1 +DFR2s
y1 −DFR4c

y1

−DFR2s
x2 −DFR4s

x2 +DFR2c
y2 −DFR4c

y2 −DFR2c
x3 −DFR4c

x3 −DFR2s
y3 +DFR4s

y3 ), (A1d)

DFH4s
x =−1

2(DFR3s
x0 +DFR5s

x0 −DFR3c
y0 +DFR5c

y0 +DFR3s
x1 +DFR5s

x1 −DFR3c
y1 +DFR5c

y1

+DFR3s
x2 +DFR5s

x2 −DFR3c
y2 +DFR5c

y2 +DFR3s
x3 +DFR5s

x3 −DFR3c
y3 +DFR5c

y3 ), (A1e)

DFH5s
x =−1

2(DFR4s
x0 −DFR4c

y0 −DFR4c
x1 −DFR4s

y1 −DFR4s
x2 +DFR4c

y2 +DFR4c
x2 +DFR4s

y2 ); (A1f)

DFH0
y =−1

2(DFR1s
x0 +DFR1c

y0 +DFR1s
x1 +DFR1c

y1 +DFR1s
x2 +DFR1c

y2 +DFR1s
x3 +DFR1c

y3 ), (A2a)

DFH1s
y =−1

2(2DFR0
x0 −DFR2c

x0 +DFR2s
y0 −DFR2s

x1 −2DFR0
y1 −DFR2c

y1 −2DFR0
x2 +DFR2c

x2

−DFR2s
y2 +DFR2s

x3 +2DFR0
y3 +DFR2c

y1 ), (A2b)

DFH2s
y = 1

2(−DFR1c
x0 +DFR3c

x0 −DFR1s
y0 −DFR3s

y0 +DFR1c
x1 −DFR3c

x1 +DFR1s
y1 +DFR3s

y1

−DFR1c
x2 +DFR3c

x2 −DFR1s
y2 −DFR3s

y2 +DFR1c
x3 −DFR3c

x3 +DFR1s
y3 +DFR3s

y3 ), (A2c)

DFH3s
y = 1

2(−DFR2c
x0 +DFR4c

x0 −DFR2s
y0 −DFR4s

y0 +DFR2s
x1 −DFR4s

x1 −DFR2c
y1 −DFR4c

y1

−DFR2c
x2 −DFR4c

x2 +DFR2s
y2 +DFR4s

y2 −DFR2s
x3 +DFR4s

x3 +DFR2c
y3 +DFR4c

y3 ), (A2d)

DFH4s
y =−1

2(DFR3c
x0 −DFR5c

x0 +DFR3s
y0 +DFR5s

y0 +DFR3c
x1 −DFR5c

x1 +DFR3s
y1 +DFR5s

y1

+DFR3c
x2 −DFR5c

x2 +DFR3s
y2 +DFR5s

y2 +DFR3c
x3 −DFR5c

x3 +DFR3c
y3 +DFR5s

y3 ), (A2e)

DFH5s
y =−1

2(DFR4c
x0 +DFR4s

y0 +DFR4s
x1 −DFR4c

y1 −DFR4c
x2 −DFR4s

y2 −DFR4s
x2 +DFR5c

y2 ); (A2f)



  /:  603

DFH0
z =DFR0

z0 +DFR0
z1 +DFR0

z2 +DFR0
z3 , (A3a)

DFH1s
z =DFR1s

z0 −DFR1c
z1 −DFR1s

z2 +DFR1c
z3 , (A3b)

DFH2s
z =DFR2s

z0 −DFR2c
z1 +DFR2s

z2 −DFR2s
z3 , (A3c)

DFH3s
z =DFR3s

z0 +DFR3c
z1 −DFR3s

z2 −DFR3c
z3 , (A3d)

DFH4s
z =DFR4s

z0 +DFR4s
z1 +DFR4s

z2 +DFR4s
z3 , (A3e)

DFH5s
z =DFR5s

z0 −DFR5c
z1 −DFR5s

z2 +DFR5c
z3 , (A3f)

DFH1c
z =DFR1c

z0 +DFR1s
z1 −DFR1c

z2 −DFR1s
z3 , (A3g)

DFH2c
z =DFR2c

z0 −DFR2c
z1 +DFR2c

z2 −DFR2c
z3 , (A3h)

DFH3c
z =DFR3c

z0 −DFR3s
z1 −DFR3c

z2 +DFR3s
z3 , (A3i)

DFH4c
z =DFR4c

z0 +DFR4c
z1 +DFR4c

z2 +DFR4c
z3 , (A3j)

DFH5c
z =DFR5c

z0 +DFR5s
z1 −DFR5c

z2 −DFR5s
z3 . (A3k)

In the case of the moment components only contributions due to the offset are presented:
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